

Epigenetic drug discovery at the academia

CRC 992 Medical Epigenetics

Xavier Lucas,¹ Martin Hügle,² Daniel Wohlwend,² Dmytro Ostrovskyi,³ Bernhard Breit,³ Manfred Jung,¹ Oliver Einsle,² and Stefan Günther¹

¹Institute of Pharmaceutical Sciences, ²Institute of Biochemistry, and ³Institute of Organic Chemistry, Albert-Ludwigs-Universität, Freiburg, Germany

xavier.lucas@pharmazie.uni-freiburg.de

General overview

Bromodomains are epigenetic mark 'readers' that specifically recognize ε -N-acetylated lysine residues. Their potential as therapeutic targets has attracted much attention due to their implication as regulators of disease-relevant gene expression. BET is the most studied bromodomain subfamily so far, and it has been characterized as a key determinant in several types of cancer, particularly leukemia [1,2]. We have performed a structure-based virtual screening and identified 4-acyl pyrroles as a novel class of bromodomain inhibitors [3].

Conclusions

4-acyl pyrrole derivatives represent a novel class of potent BET bromodomain inhibitors. We show that rational design allows for the modulation of human bromodomains beyond the BET subfamily. The established collaborative platform presented herein, built within the CRC 992 Medical Epigenetics, is an efficient academic resource for the development of inhibitors of disease-relevant epigenetic targets. As a result, we are currently expanding the scope of our work to other less studied epigenetic regulators.

Academic drug discovery pipeline

(i) Few tens of promising candidates are selected from millions of chemicals using efficient *in silico* techniques. (ii) Their binding affinity is evaluated experimentally by ITC, α -screen, ThermoFluor, etc. (iii) Validated lead compounds are subjected to further

structure-based optimization.

(iv) The biological activity of the hits is explored in in vitro cellular assays.

Discovery of XD14

We successfully applied the presented academic pipeline and identified the potent BET bromodomain inhibitor **XD14**, which features a novel 4-acyl pyrrole core.

*K*_{D, BRD4(1)} = 0.16 μM

Bromodomain selectivity profiling shows that XD14 inhibits the BET bromodomain family, as well as the bromodomains of CREBBP and EP300.

PC-3 DU-145

Design of CREBBP and EP300 inhibitors

We have used the **4-acyl pyrrole** scaffold to rationally design compounds with improved affinity towards **CREBBP** and **EP300** compared to XD14:

XD14 exhibits potent, specific inhibition of cell proliferation of leukemic cell lines HL60 and SR. The compound is not toxic neither in cellular nor animal models.

Cell line	GI (%)		Cell line	GI (%)
T-47D	31.0	Renal cancer Ovarian cancer cell lung cancer CNS cancer	SNB-75	29.4
HS 578T	18.0		SF-295	10.0
BT-549	15.3		U251	6.6
MCF7	15.1		SNB-19	1.3
MDA-MB-468	7.7		SF-268	0.2
MDA-MB-231/ATCC	2.4		NCI-H522	42.4
KM12	24.3		NCI-H322M	25.4
HCT-116	10.9		HOP-92	15.8
SW-620	7.3		NCI-H226	9.7
HCT-15	4.7		NCI-H23	8.9
HT29	1.2		HOP-62	5.7
COLO 205	-4.7		A549/ATCC	4.1
HL-60(TB)	65.0		NCI-H460	3.2
SR	64.2		IGROV1	27.3
K-562	42.0		OVCAR-4	14.8
MOLT-4	34.8		OVCAR-3	11.2
CCRF-CEM	23.0		OVCAR-8	6.7
RPMI-8226	21.8		SK-OV-3	6.4
UACC-62	23.5		NCI/ADR-RES	3.2
M14	15.2		OVCAR-5	-6.7
SK-MEL-5	12.9		UO-31	31.3
UACC-257	10.3		786-0	15.6
MDA-MB-435	9.6		A498	14.5
SK-MEL-2	9.1		SN12C	9.4
SK-MEL-28	7.2		CAKI-1	6.1
MALME-3M	4.7		ACHN	3.6
PC-3	17.8		TK-10	-0.7
DU-145	2.6		RXF 393	-1.0

[1] R.K. Prinjha, J. Witherington, K. Lee, "Place your BETs: the therapeutic potential of BET bromodomains", *Trends Pharmacol. Sci.*, 2012, 33(3), 146-53.

[2] X. Lucas, S. Günther, "Targeting the BET family for the treatment of leukemia", *Epigenomics* (in press).

[3] X. Lucas, D. Wohlwend, M. Hügle, K. Schmidtkunz, S. Gerhardt, R. Schüle, M. Jung, O. Einsle, S. Günther, "4-acyl pyrroles: mimicking acetylated lysines in histone code reading", Angew. Chem. Int. Ed. Engl., 2013, 52(52), 14055-9.

Baden-Württemberg MINISTERIUM FÜR WISSENSCHAFT, FORSCHUNG UND KUNST

