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Project 1: What is NANPDB ?

Project 2: SeMPI — a genome-based Secondary Metabolite

Prediction and Identification web server

Northern African Natural Products Database (NANPDB)[1] is an online accessible
database of Natural products (NPs) which are main sources of drugs and drug leads
and play an important role in drug discovery by providing novel scaffolds[2,3]. In

NANPDB we have collected natural products from the northern african region which
IS spreading over 9 million km?[2]. Data was extracted from literature sources of the
period 1962 to 2016. The data consists of ~4500 NPs (Table 1) isolated from plants,
animals (e.g. corals), fungi, and bacterial sources (Fig. 1). The website provides
browsable lists, compounds & species cards, diverse search options (e.g. by

keywords, structural

similarity or sub-structure). Similarity and sub-structural
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Figure 1: Workflow of data collection and implementation

www.african-compounds.org/nanpdb

Table 1: Current data of NANPDB

unique plant source biological modes of
SMILES families organisms activities action
4469 146 617 98 37
unique kingdoms cited PubMed compound
PubChem IDs "™Lcimnea | references = references classes
2059 5 787 324 95
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paths (Fig. 2f).

Project 4: Fragment based target prediction

(FragPred)
In this project we evaluated Q —ragment
available fingerprint (FP) Q pased target . .
techniques.  Furthermore, \ Q rdFMCS orediction (a) ChREMBL
we extended these it — (FragPred)
fingerprints to  develop nrawmgonuﬂns‘%%Gemmmwnhmx is a method
MoKo fingerprints with to improve o —— Wﬁmﬁﬂﬁ
additional bits derived from sub-structure patterns the prediction of target interactions using with filters
which were generated by the software Canvas  syp-structure and target information. Initially,
(Schrodinger). We have taken the Drugbank[6]  compounds from ChEMBL with binding L{ L+
data consisting of drugs and their targets (Fig. 3-a)  affinity lower than 20uM were extracted as _
for benchmarking the quality by means of target learning dataset (Fig. 5-a,b). These LI Ll (c) Fragmenting
N with RDKit

prediction. Each molecule were compared to each
other and ranked by their similarity index I.e.,
tanimoto coefficients (Fig. 3-b,c). The quality of a
fingerprint was evaluated by comparing the ranking
of molecules with the same target and Is reflected
by AUC or BEDROC scores (Fig. 4). The results
Indicated that various fingerprints can be slightly
Improved by Including additional bits encoding for
specific sub-structures of molecules.
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Figure 4a: Comparission of MoKo FP merged +FP
with original FPs — AUC values
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Figure 4b: Comparission of MoKo FP merged +FP
with original FPs — BEDROC values
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molecules were then fragmented according
to common reaction rules (RECAP rules|/]
(Filg. 5-c). Subsequently fragments were
clustered with RDKIt applying different cluster
algorithms (Butina, k-means) (Fig. 5-d).
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(Fig. 5-f). Based on cluster-target pairs an
enrichment analysis was performed to

iIdentify fragments that interact with specific
targets more frequently than expected by
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random selection (Fig. 5-g,h). Based on a :
calcualted enrichtment score a ranking of the b
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target prediction method for queried small
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molecules (Fig. 5-1,)).
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Figure 5: FragPred workflow
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