NANPDB: A database of Natural Products from Northern Africa

<u>Telukunta, KKa; Ntie-Kang, Fb;</u> Döring, Ka; Simoben, C.Vb; Moumbock, A.F.Ac; Malange, Y.Ic; Njume, L.Ed; Yong, J.Nc; Sippl^b, W; Günther S^{a,e}

Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, Germany
 Dept. of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Germany
 Compt. of Chemistry and Chemical & Bioactivity Information Centre, Dept. of Chemistry, Faculty of Science, University of Buea, Cameroon
 Freiburg Institute for Advanced Studies (FRIAS, University of Freiburg, Germany)

kiran.telukunta@pharmazie.uni-freiburg.de

Current data of NANPDB				
unique SMILES	plant families	source organisms	biological activities	modes of action
4469	146	617	98	37
unique PubChem IDs	kingdoms (majorly from plantae, animal, bacteria and fungi)	cited references	PubMed references	compound classes
2059	5	787	324	95

What is NANPDB?

Northern African Natural Products Database (NANPDB)[1] is an online accessible database of Natural products(NPs), which are main sources of drugs and drug leads and play an important role in drug discovery by providing novel scaffolds[2,3]. In NANPDB we have covered from Northern African region which is spreading over 9 million kms[2,4] of Africa continent. It is a significant region as concluded in a recent UNO survey that this part of the world is a huge repository of bioactive NPs. For the Database, we have collected information (see Figure 4), which covered literature sources for the period from 1962 to 2016. The data consists of ~4500 NPs isolated from plants, animal (e.g. Coral), fungal, and bacterial sources.

Compound classes

A significant percentage of identified compounds are terpenoids, flavonoids, and alkaloids. About one-fifth of the compounds have been tested to be active in at least one bioassay.

Biological activities

The majority of compounds among recorded 98 bioactivities are anti-infective, cytotoxic and potential anticancer drugs. Other class includes compounds exhibiting inhibitory activities against recorded antileukemic, kinase inhibitors, and tumour

Simplified database schema 2000 About compounds were present in PubChem[5]. Similarly, half of 781 literature references are PubMed, in currently listed indicating unique nature of data in pkCSM+ NANPDB. The gives also Toxicity predictions based on the pkCSM Pub©hem model[6]. For the taxonomic information, compounds are linked to NCBI database. To describe source species, NANPDB has been linked to the Prota[7] and the Tropicos[8] database. The complete data is organized into optimized schema as shown in Figure 3. implemented Database is on PostgreSQL 9.5 version and the Python-Django-Mezzanine Web-

MANPDB SMILES Wolecules Wolecules Sources Wolecules Sources Wolecules Sources Sources Wolecules Sources Sources Wolecules Sources Sources

Framework.

🟓 python

"Northern African natural products ready for Drug Discovery"

NANPDB vs Other NP Databases

There are ~95% unique compounds in NANPDB (Figure 5) when compared to NPs of bacterial origin (StreptomeDB 2.0[9], BioPhytMol[10]), along with NPs that target the specific diseases tuberculosis and cancer (NPACT[11]). Comparing physicochemical properties involved in Lipinski's rule of five indicates that around ~75% of compounds had MW \leq 500Da. Average MWs of NANPDB (420) are in the range of average MWs of DrugBank[12] (341), BioPhytMol (347), StreptomeDB 2.0 (514), and NPACT (442). On the other hand, mean cLogP values of both NANPDB and FDAapproved drugs were equal to ~2. Also, ~57% of NANPDB compounds showed no violations of any Lipinski rule, ~75% of NPs showed less than two violations. And ~87% of NANPDB compounds respecting Lipinski's criterion (cLogP \leq 5), when compared with ~83% (DrugBank), ~89% (StreptomeDB 2.0), ~78%(NPACT), and ~69% (BioPhytMol). Indicating good drug-likeliness of the NANPDB compounds.

Website features

- **Browsable lists**: Lists contain information in alphabetical browsable order. These lists exist for Compounds, Species, Families, References, and Authors.
- Compound & Species Cards: Pages displaying complete information of the selected compound or species

Figure 5: NANPDB and other Databases

selected compound or species.

- **Query searches**: Compound name or ID or a keyword can be given to retrieve all compounds of the given query.
- Similarity & Structure Search: A full molecule or substructure can be drawn or SMILES format can be directly given to identify the most similar compounds of the given structure or substructure.

www.african-compounds.org/nanpdb

[1] Ntie-Kang, F, et al.: *J. Nat. Products* 2017, PMID: 28641017
[2] Harvey, A. L, et al.: *J. Nat. Rev. Drug Discovery* 2015, 14, 111-129
[3] Rodrigues, T, et al.: *G. Nat. Chem.* 2016, 8, 531-541
[4] UNO finding: http:// millenniumindicators.un.org/unsd/methods/m49/m49regin.htm
[5] Kim, S, et al.: *Nucleic Acids Res.* 2016, 44, D1202-D121310.1093
[6] Pires, D. E. V, et al.: *J. Med. Chem.* 2015, 58, 40667-4072
[7] Prota Africa: Plant resources of Tropic Africa (http://www.prota4u.org/)
[8] Tropicos.org. Missouri Botonical Garden (http://www.tropicos.org)
[9] Klementz, D, et al.: *Nucleic Acids Res.* 2016, 44, D509-D51410.1093
[10] Sharma, A, et al.: *J. Cheminf.* 2014, 6, 4610.1186/s13321-014-0046-2
[11] Mangal, M, et al.: *Nucleic Acids Res* 2013, 41, D1124-D112910.1093
[12] DrugBank version 5.0

Alexander von Humboldt Stiftung/Foundation

